
A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M AY  2 0 2 4 E991

Article

Multiagency Ensemble Forecast of Wildfire 
Air Quality in the United States: Toward 
Community Consensus of Early Warning
Yunyao Li ,a,b Daniel Tong,a,b Peewara Makkaroon,a Timothy DelSole,a Youhua Tang,b,c 
Patrick Campbell,b,c Barry Baker,c Mark Cohen,c Anton Darmenov,d Ravan Ahmadov,e 
Eric James,e Edward Hyer,f and Peng Xianf

ABSTRACT: Wildfires pose increasing risks to human health and properties in North America. Due 
to large uncertainties in fire emission, transport, and chemical transformation, it remains challeng-
ing to accurately predict air quality during wildfire events, hindering our collective capability to issue 
effective early warnings to protect public health and welfare. Here, we present a new real-time 
Hazardous Air Quality Ensemble System (HAQES) by leveraging various wildfire smoke forecasts 
from three U.S. federal agencies (NOAA, NASA, and Navy). Compared to individual models, the 
HAQES ensemble forecast significantly enhances forecast accuracy. To further enhance forecasting 
performance, a weighted ensemble forecast approach was introduced and tested. Compared to 
the unweighted ensemble mean, the multilinear regression weighted ensemble reduced fractional 
bias by 34% in the major fire regions, false alarm rate by 72%, and increased hit rate by 17%. 
Finally, we improved the weighted ensemble using quantile regression and weighted regression 
methods to enhance the forecast of extreme air quality events. The advanced weighted ensemble 
increased the PM2.5 exceedance hit rate by 55% compared to the ensemble mean. Our findings 
provide insights into the development of advanced ensemble forecast methods for wildfire air 
quality, offering a practical way to enhance decision-making support to protect public health.

SIGNIFICANCE STATEMENT: Wildfires are a growing threat to health and safety in North America. 
Accurately predicting air quality during these events is crucial but challenging. In response, we 
have developed the real-time Hazardous Air Quality Ensemble System (HAQES), by combining 
forecasts from three U.S. federal agencies (NOAA, NASA, and Navy). HAQES significantly improves 
accuracy compared to individual models. Moreover, we further improve the wildfire air quality 
forecast by introducing the weighted ensemble method. The weighted ensemble reduced bias by 
34% and false alarms by 72%, while increasing hit rates by 55%. HAQES advances our ability to 
protect public health during wildfire events.
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1. Introduction
Wildfires are a significant contributor to atmospheric aerosols and trace gases, causing haz-
ardous air quality and adverse health effects. Research has established links between wildfire 
smoke exposure and all-cause mortality, as well as respiratory health issues (Cascio 2018). 
The global average mortality attributable to landscape fire smoke exposure was estimated to 
be 339 000 deaths annually (Johnston et al. 2012).

Air quality forecast during wildfire events is crucial for public health management and 
emergency response, including early warnings, but it remains a challenging task due to un-
certainties in fire emissions (Pan et al. 2020), plume rise calculations (Ye et al. 2021; Li et al. 
2023), and other model inputs/processes (Delle Monache and Stull 2003).

Ensemble forecasting techniques have been increasingly used to improve the predictability of 
extreme air quality episodes. Sessions et al. (2015) and Xian et al. (2019) developed and evalu-
ated the International Cooperative for Aerosol Prediction (ICAP) multimodel ensemble (MME), 
a global operational aerosol multimodel ensemble for the aerosol optical depth (AOD) forecast. 
Li et al. (2020) used an ensemble forecast to predict surface PM2.5 during the 2018 California 
Camp Fire event using the National Oceanic and Atmospheric Administration (NOAA) Hybrid 
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) dispersion model with different  
emissions, plume heights, and model setups. Makkaroon et al. (2023) successfully demon
strated a multimodel ensemble forecast system that effectively simulated the 2020 western U.S. 
“Gigafire,” with the ensemble mean outperforming individual models. These studies highlight 
the potential of ensemble forecasting to improve the predictability of wildfire air quality.

While multimodel ensemble often outperforms single-model forecasts, some challenges 
remain. The ensemble mean does not work best all the time (Xian et al. 2019; Makkaroon 
et al. 2023). For instance, insufficient diversity among models in the multimodel ensemble 
can limit the ability of the ensemble to capture the full uncertainties and variability tied to 
different inputs and assumptions. Moreover, if individual models in the ensemble are biased, 
the ensemble itself may exhibit systematic bias (DelSole and Tippett 2016).

This study presents a new Hazardous Air Quality Ensemble System (HAQES) over the contigu-
ous United States (CONUS) by leveraging real-time forecasts from three U.S. federal agencies 
(NOAA, NASA, and Navy). We applied a weighted ensemble forecast approach to enhance skill 
and further improved it by incorporating quantile regression, weighted regression methods to 
enhance extreme air quality forecasts, and ridge regression to address overfitting concerns. We 
also introduced a combination of random walk and categoric metrics to assess the performance 
of the ensemble and individual models against AirNow observations for the year 2022.

2. Materials and methods
a. Fires in 2022. This paper focuses on the year 2022 when 66 255 fires (12th most since 2001) 
burned 7 534 403 acres (11th most), as reported by the National Interagency Fire Center. 
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Figure 1 displays the annual and monthly total fire radiative energy (FRE) from Global 
Biomass Burning Emissions Product (GBBEPx; Zhang et  al. 2019), which is highly corre-
lated with fire emissions (Wooster et al. 2005), across the 10 U.S. Environmental Protection 
Agency (EPA) regions for 2022. In the eastern United States, biomass-burning emissions 
were concentrated in the southeastern states (Region 4). Although the southeast fires af-
fected a large area, the total FRE was not as high as that of the western wildfires. Region 4’s 
peak fire period was in March, releasing 6281 TJ of fire energy in 1 month. In the central 
United States, fire emissions were primarily located in Regions 6 and 7. Central U.S. fires 
peaked in spring (April–May), releasing 41 634 TJ of fire energy within 2 months. In the 
western United States, fires were primarily located in Regions 9 and 10, with the peak fire 
period occurring in the summer, especially in September, when 22 804 TJ of fire energy was 
released in 1 month. Overall, the strongest fire energy occurred in September (33 631 TJ), 
followed by May (30 330 TJ).

b. Description of ensemble members.  The air quality forecast ensemble in this study was 
developed using both regional and global chemical transport models, including the NOAA  
High-Resolution Rapid Refresh-Smoke (HRRR-Smoke), Global Ensemble Forecast System- 
Aerosols (GEFS-Aerosols), National Air Quality Forecasting Capability (NAQFC), the NASA 
Goddard Earth Observing System (GEOS), and the Naval Research Laboratory (NRL) Navy 
Aerosol Analysis and Prediction System (NAAPS). These models range from simple smoke 
tracer models to full air quality models with gas/aerosol chemistry, from high-resolution 
regional to coarse-resolution global. The ensemble exploits the strengths of these widely 
different models to improve forecasting accuracy. These models encompass a wide range 
of emission datasets and plume rise schemes. The study utilizes the 12–36-h surface PM2.5 

Fig. 1.  The (a) annual and (c) monthly total FRE across the (b) 10 U.S. EPA regions for 2022.
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forecasts initialized at 1200 UTC (forecast hour: 0000–2300 UTC the next day) for all five 
models. Each model is briefly described below.

1) HRRR-Smoke. HRRR-Smoke (Ahmadov et al. 2017; Dowell et al. 2022) is an operational 
real-time three-dimensional coupled weather-smoke forecast model operating at a 3-km 
spatial resolution over the contiguous United States (CONUS) domain, maintained by NOAA 
National Centers for Environmental Prediction (NCEP). The HRRR data assimilation system 
provides initial conditions and a background ensemble for meteorological data assimilation. 
HRRR-Smoke ingests the satellite fire radiative power (FRP) data from the Suomi National 
Polar-Orbiting Partnership (SNPP), NOAA-20, and Moderate Resolution Imaging Spectro-
radiometer (MODIS) Terra/Aqua satellites to estimate wildfire smoke emissions. Since 
HRRR-Smoke is designed to forecast PM2.5 where smoke is a dominant pollution source, it 
does not include any nonfire emissions (e.g., anthropogenic emissions) and gas/aerosol 
chemistry.

2) GEFS-Aerosol. GEFS-Aerosols (Zhang et al. 2022) is a global atmospheric composition 
model developed by the NCEP in collaboration with the NOAA Global Systems Laboratory, 
Chemical Sciences Laboratory, and Air Resources Laboratory. It integrates Finite-Volume  
Cubed-Sphere Dynamical Core (FV3)-based Global Forecast System (GFS) version 15 me-
teorology and WRF-Chem’s atmospheric aerosol chemistry. The Aerosol module is based 
on the NASA Goddard Chemistry Aerosol Radiation and Transport model (GOCART) (Chin 
et al. 2002) with both fire emission and anthropogenic emission. The biomass-burning emis-
sion is from GBBEPx. Smoke plume rise is calculated using a one-dimensional time-dependent 
cloud module from the HRRR-Smoke model (Freitas et  al. 2007). This study utilized the 
GEFS-Aerosols global PM2.5 forecasts at 0.25° × 0.25° resolution.

3) NAQFC. NOAA’s operational NAQFC uses the Community Multiscale Air Quality (CMAQ) 
modeling system version 5.3.1 driven by NOAA’s latest operational FV3-GFSv16 meteorol-
ogy at the horizontal spatial resolution of 12 km with 35 vertical layers (Campbell et  al. 
2022). The chemical gaseous boundary conditions are based on static, global GEOS-Chem 
simulations, while aerosol boundary conditions are dynamically updated from NOAA’s op-
erational GEFS-Aerosols model. NAQFC employs GBBEPx for biomass-burning emissions. 
The model uses the Briggs (1969) plume rise algorithm to compute wildfire smoke plumes. 
It also includes anthropogenic emissions and biogenic emissions.

4) GEOS. The GEOS (Gelaro et al. 2017) system was developed by NASA’s Global Modeling 
and Assimilation Office. This study used the GEOS Forward Processing (GEOS-FP, version 
5.27.1) system at a 0.25° × 0.3125° spatial resolution, which generates analyses, assimila-
tion products, and 10-day forecasts in near–real time. GEOS-FP is built around the GEOS 
Atmospheric General Circulation Model, the GEOS atmospheric data assimilation system 
(hybrid–4DEnVar ADAS), and aerosol assimilation (Randles et  al. 2017). Aerosols are an 
integral component of the model physics and are simulated with the GOCART (Chin et al. 
2002). Fire emissions come from the Quick Fire Emission Dataset (QFED; Darmenov and 
da Silva 2015) and leverage low-latency MODIS fire locations and FRP (Collection 6) data. 
Emissions from fires are distributed in the planetary boundary layer (PBL). The model also 
includes anthropogenic and biogenic emissions.

5) NAAPS. NAAPS (Lynch et al. 2016) is developed at NRL Marine Meteorology Division 
and provides an operational forecast of 3D atmospheric anthropogenic fine and biogenic 
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fine aerosols, biomass burning smoke, dust, and sea salt concentrations on a spatial resolu-
tion of 0.333° × 0.333°. The current NAAPS is driven by global meteorological fields from 
the Navy Global Environmental Model (NAVGEM; Hogan et al. 2014). NAAPS uses a bio-
mass burning source from the Fire Locating and Modeling of Burning Emissions (FLAMBE) 
inventory, which is based on near–real-time MODIS fire hotspot data (Reid et al. 2009). The 
wildfire smoke at emission is distributed uniformly through the bottom 4 layers within the 
PBL. The NAAPS analysis is constrained by the assimilation of MODIS AOD (Zhang et al. 
2008; Hyer et al. 2011).

c.  Description of observations.  The hourly ground PM2.5 observations from the U.S. EPA 
AirNow network for the year 2022 are used to evaluate the surface air pollution predic-
tions in this study. The real-time AirNow measurements are collected by the state, local, or 
tribal environmental agencies using federal references or equivalent monitoring methods 
approved by the EPA. It contains air quality data for more than 500 cities across the United 
States (total of 1156 sites), as well as for Canada and Mexico.

d. Ensemble design. In this study, we examined five techniques for creating ensembles cat-
egorized into two groups: unweighted and weighted ensemble approaches. Unweighted en-
semble employed multimodel average (MMA) to merge predictions from multiple models 
into one consolidated forecast, while weighted ensemble assigned different weights b to 
member models Mj:

∑b b= +
0

=1

M Mj j
j

S
ˆ , 	 (1)

where S represents the total number of models which is 5 in this study and b0 is the intercept. 
To determine the weights, the data for the year 2022 are grouped into training and testing 
sets. Since wildfires can last for weeks, to ensure the independence of the training and testing 
data, we did not select the training data randomly. Instead, we used the first 9 months of data 
as the training set and the final 3 months as the testing set. Due to computational limitations 
(space and time), we were only able to analyze 1 year of data, which may lead to variability 
in the calculated weights for each model. However, the purpose of this paper is to introduce 
and test various weighted ensemble approaches for air quality forecasting. Longer training 
and testing periods are required before implementing a weighted ensemble in operational 
forecasting, to thoroughly investigate its performance and determine the optimal weights for 
each model.

We experimented with four regression methods to determine these weights: multilinear re-
gression (MLR), ridge regression (RR), quantile regression (QR), and weighted regression (WR).

1) MLR. MLR calculates the weights for each model by minimizing the error between the 
observation O and the weighted multimodel prediction:

∑∑b b b= − −
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	 (2)

where N is the total number of observations.

2) RR.  The ridge regression (Hoerl and Kennard 1970) is a technique used to reduce 
overfitting issues in MLR, which is a common problem in statistical modeling and machine 
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learning. RR adds a penalty term to the cost function that constrains the size of the weights. 
The penalty term is proportional to the square of the weights, so the larger the weights, the 
larger the penalty:

∑∑ ∑β β β λ β= − −

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j
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ˆ arg min ,RR

	 (3)

where l is the ridge parameter. The first 20 days in each month are used to train the data 
using [(3)], and the last 10 days are used to find the best l. We tested the value of l from 
1 to 1000. Ridge regression can produce a more robust and stable model, especially when 
the number of predictors is large, and the predictors are nearly collinear, which occurs of-
ten in multimodel forecasting. It has been found to be useful in climate ensemble studies 
(DelSole 2007).

3) QR. MLR and RR estimate the conditional mean of the forecast and tend to favor the mean 
state, which is suitable for general cases, but not for extreme events. To address this, we em-
ploy QR to enhance extreme air quality ensemble forecasting (Koenker and Bassett 1978). 
QR is an approach like traditional linear regression but with quantile-dependent regression 
coefficients:

∑b b= +
0

=1

M Mj q j q
j

S
ˆ ,QR , , 	 (4)

where q represents the quantile ranging from 0 to 1. In this paper, we use q = 0.9 to give 
more credit to the top 10% of events (use the 90th percentile of data to determine the beta 
coefficients). The quantile regression coefficients are estimated by minimizing the sum of 
asymmetrically weighted absolute deviations:

∑ ∑ ∑ ∑b b b b b= − − + 1− − −
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4) WR. WR is another statistical method addressing the issue of extreme events. WR assigns 
different weights to data points. The weights are used to give more importance to certain 
data points that are more important to the analysis:

∑ ∑b b b= − −
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To increase the impact of extreme events in the regression analysis, we assign a weight of 10 
to cases with daily PM2.5 concentration higher than 20 µg m−3 (80% of the total observations, 
based on Kang et al. (2007), the basis for calculating the weighted success index for extreme 
forecast) and a weight of 1 to other points, which gives more importance to polluted days:

=
10 >20

1


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(7)
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e. Evaluation method
1) Random walk. We employ the DelSole and Tippett (2016) random walk method to evalu-
ate the performance of both ensemble and individual models. When comparing forecasts A 
and B for N times, a positive step is taken if A outperforms B and a negative step if otherwise. 
Let K represent the number of times that forecast A outperforms forecast B. The net distance 
d (forecast score) traveled by the random walk is as follows:

( )= − − =2 −d K N K K NN . 	 (8)

Fractional bias (FB, appendix A) is used to determine the more skillful forecast for each event. 
A significance test Ka (appendix B) is conducted to show if A is significantly better (K > Ka) or 
worse (K < N− Ka) than B.

2) Categorical metrics. Standard metrics like fractional bias have limitations in evaluating 
the model performance of extreme events, such as wildfires. To address this, categorical 
metrics can be used to measure the model’s ability to predict U.S. EPA National Ambient Air 
Quality Standards (NAAQS) 24-h PM2.5 exceedance events (>35 µg m−3; U.S. EPA 2020). Here, 
we used three categorical metrics (0%–100%) described by Kang et al. (2007):

1)	 Area hit rate (aH) indicates match between forecasted and observed poor air quality ex-
ceedances. Higher aH implies a more reliable model.

2)	 Area false alarm rate (aFAR) measures incorrect predictions of poor air quality. Lower 
aFAR implies a more reliable model.

3)	 Weighted success index (WSI) considers hits, false alarms, and missed exceedance fore-
casts. A higher WSI suggests a more reliable model.

The equations for these metrics are shown in appendix C.

3. Results
This section begins with evaluating the performance of the unweighted ensemble forecast 
compared to each individual model [referred to as model 1–5 (M1–M5); the purpose of 
this study is to assess ensemble forecast skills rather than delving into the performance 
of individual models. We intentionally rearranged the order of these models and renamed 
them to models 1–5 to avoid focusing on specific model performance.]. Then, we compare 
the performance of the unweighted ensemble with that from different weighted ensemble 
methods.

a. Comparison of MMA with individual models. The annual mean surface PM2.5 concentra-
tion (Fig. 2) predicted by models 1–5 and the MMA is compared to the AirNow observations. 
The results from different models varied substantially, highlighting the significant uncer-
tainty in wildfire air quality forecasts. Models 1, 2, and 4 overestimate PM2.5 in the Southeast 
and Northwest, where models 3 and 5 underestimate it. The ensemble mean balanced these 
overestimations and underestimations and is closer to the observations.

We compared the MMA with each individual model using the random walk method for 
major fire regions (EPA regions 4, 6, 7, 9, and 10 from Fig. 1c to Fig. 3). Figure 3 shows the 
relative forecast score of individual models compared to MMA. A negative value on day 
n indicates that the overall performance of MMA surpasses that of the individual model 
from day 1 to day n; the negative trend observed from day n1 to n2 signifies that the MMA 
consistently outperforms the individual model between n1 and n2, and vice versa. In regions 4  
and 10, the consistent downward trend of the random walk scores implies that MMA 
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Fig. 2.  Annual mean surface PM2.5 concentration (contour) predicted by models 1–5 and MMA and observed by the AirNow net-
work (colored circles) for the year 2022.

Fig. 3.  Comparison of individual models to MMA using the random walk method for major fire regions.
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consistently outperforms individual models. In regions 6, 7, and 9, the scores are mostly 
negative with some transient positive scores in early 2022 as well as some positive ten-
dency at the end of the year (because of the underestimate of the anthropogenic emission), 
indicating that MMA performs better than each model most of the time, especially in the 
wildfire season (summer and fall). The MMA improves air quality forecasting because it 
balances the model bias of the five individual models (Fig. S1 in the online supplemental 
material). Overall, the MMA outperforms individual models, demonstrating that ensemble 
forecasts can effectively reduce forecast uncertainty.

To evaluate the forecasting ability of extreme events by individual models and MMA, we 
calculated the area hit rate, area false alarm rate, and weighted success index for the year 
2022 (Table 1). The MMA obtains the highest WSI, third highest hit rate, and the second low-
est false alarm rate. Model 4 excels in hit rate but has the highest false alarms. Model 3 has 
not only the lowest false alarm rate but also the lowest hit rate. Overall, the MMA ensemble 
works better than the individual models in extreme events air quality forecast, consistent 
with prior research (Li et al. 2020; Makkaroon et al. 2023).

b. Weighted ensemble. MMA improved air quality forecasting, but there is still room for 
further improvement. Therefore, we explored various weighted ensemble approaches to 
further enhance forecasting performance. As explained in section 2d, the initial 9 months 
are utilized for weight calculation, while the subsequent 3 months serve as the testing 
data, which will be assessed in this section. The first weighted ensemble approach we 
tested is MLR. Compared to the MMA, MLR reduces the fractional bias by 34%, increases 
the hit rate by 17%, significantly reduces the false alarm rate by 72%, increases the WSI 
by 5% (Table 2), and is closer to the observations (Fig. 4). These results demonstrate that 
the weighted ensemble outperforms the unweighted ensemble.

The performance of RR is generally comparable to that of MLR (Fig. 4). RR has a slightly 
lower hit rate, lower false alarm rate, and lower weighted success index (Table 2) compared 
to MLR. Employing RR to mitigate the overfitting concern of MLR does not notably enhance 
model performance. This could be attributed to the modest number of models, so the data 
are not too noisy. Previous studies found that RR can produce a more robust and stable model 
when the number of predictors is large and the data are noisy (DelSole 2007; Pena and van 
den Dool 2008).

MMA, MLR, and RR all tend to underestimate the PM2.5 exceedance events (Fig. 4), par-
ticularly on the West Coast with high wildfire emissions (R9 and R10). Therefore, we applied 

Table 1.  The aH, aFAR, and WSI for models 1–5 and the MMA for the year 2022. The best results are 
highlighted in bold, while the worst results are underlined.

Model 1 Model 2 Model 3 Model 4 Model 5 MMA

aH 26.98 41.12 14.68 48.12 12.42 37.44

aFAR 83.29 79.70 29.77 93.10 84.17 77.09

WSI 13.06 20.10 16.47 6.98 13.82 20.68

Table 2.  The FB, aH, aFAR, and WSI for the different models (M1–M5), MMA, and four weighted  
ensemble forecasts (MLR, RR, QR, and WR) for the October–December 2022 testing period (bold  
represents the best results and underline represents the worst results).

M1 M2 M3 M4 M5 MMA MLR RR QR WR

FB 0.60 0.49 1.87 0.88 0.50 0.50 0.33 0.34 0.41 0.35

aH 42.09 76.87 8.52 65.22 61.04 56.00 65.39 61.04 86.96 69.91

aFAR 57.24 31.25 0 51.64 32.21 29.11 8.14 6.17 32.89 14.80

WSI 5.09 17.03 1.18 12.04 18.52 19.16 20.15 16.92 25.49 22.50
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QR to enhance predictions of extreme cases. QR enables the ensemble model to predict more 
polluted events than MLR and MMA (Table 2). QR has a much higher hit rate, which is about 
55% higher than the MMA and 33% higher than the MLR. However, sometimes QR overes-
timates the pollution level when the actual pollution level is not high. Its false alarm rate 
reaches 32.89%. QR has the highest WSI among all models, including individual models and 
ensemble forecasts. The fractional bias of QR is higher than that of MLR and RR but still 18% 
lower than that of MMA.

Another approach to improve the ensemble forecast’s ability to predict extreme cases is 
WR. WR improved the forecast for PM2.5 exceedance by increasing the area hit rate by 7% 
compared to MLR and 25% compared to MMA, respectively. QR focuses on the top 10% of 
cases, whereas WR assigns greater weight to the top 20% of cases. Consequently, predictions 
using QR tend to be higher than WR (Fig. S6). QR exhibits more overestimation and less un-
derestimation compared to WR. As reflected in Table 2, the fractional bias of QR is 15% higher 
than WR, the area hit rate of QR is 17% higher, and the false alarm rate is also elevated (55%) 
compared to WR. WR offers a balanced enhancement. WR’s WSI is the second highest which 
surpasses MMA and all individual models.

4. Conclusions
In this study, we built a new real-time HAQES by leveraging operational and research fire 
wildfire smoke forecasts from U.S. federal agencies: GEOS from NASA, NAAPS from NRL, and 
GEFS-Aerosol, HRRR-Smoke, and NAQFC from NOAA. Automated transfer links have been 
established between these agencies and George Mason University (GMU). Individual model 

Fig. 4.  Scatterplots between predicted and observed PM2.5 for MMA (green), MLR (magenta), and RR (black) for five fire-prone 
EPA regions. The solid black line represents the 1:1 ratio line for the observations and forecasts, while the dashed black lines 
represent the 1:2 and 2:1 ratio lines.
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daily forecast results are automatically transmitted to GMU each day to generate the real-time 
ensemble forecast results. HAQES significantly enhances forecast accuracy compared to single 
model forecasts, reducing model bias and increasing the weighted success index for PM2.5 
exceedances.

To further enhance forecasting performance, we introduced a weighted ensemble forecast using 
multilinear regression. Compared to the unweighted ensemble mean, the multilinear regression 
weighted ensemble reduced model bias by 34%, reduced the false alarm rate by 72%, and in-
creased hit rate by 17%. We also used ridge regression to reduce the overfitting issue of multilinear 
regression; however, the ridge regression weighted ensemble is close to multilinear regression 
weighted ensemble, indicating that the overfitting was not significant in our ensemble system.

Finally, we improved the weighted ensemble using quantile regression and weighted 
regression to enhance the forecasting capability during extreme air quality events. The 
advanced weighted ensemble increased the hit rate by 55% for PM2.5 exceedance compared 
to that by the ensemble mean. Our findings provide insights into the development of ad-
vanced ensemble forecast methods for wildfire air quality, which offers a practical way to 
enhance decision-making support through leveraging existing forecasting efforts across 
federal agencies.
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APPENDIX A
Fractional Bias
Below is the definition of fractional bias:

=2×
−

+

O M

O Mi
i i

i i

FB , 	 (A1)

where O is the AirNow observation and M is the model forecast.

APPENDIX B
Significance Test Ka for Random Walk
The Ka can be approximated as follows:

=
2
−

4
−
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where za is the value for which a standardized Gaussian is exceeded with probability a = 5% 
and ⌈x⌉ denotes a ceiling function that maps x to the smallest integer greater than or equal to x.
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APPENDIX C
Categorical Metrics
The area false alarm rate (aFAR) and area hit rate (aH) were calculated based on paired ob-
served O and predicted M PM2.5 exceedances by considering three possible scenarios: (i) a 
forecasted exceedance that is not observed; (ii) a forecasted exceedance that is observed; and 
(iii) an observed exceedance that is not forecasted. The aH and aFAR values are determined 
by matching observed and forecasted exceedances within a designated area surrounding the 
observation locations. In the present study, we used an area of 0.5° × 0.5° centered at each 
AirNow monitor location.

=
+










×100aFAR Aa

Aa Ab
%, 	 (C1)
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×100aH Ab

Ab Ac
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where Aa is the number of forecast area exceedances that were not observed (false alarms); 
Ab is the number of cases where an observed exceedance corresponds to a forecast exceed-
ance within the designated area of 0.5° × 0.5° centered at the monitor location; and Ac is the 
number of observed exceedances that are not forecasted within the designated area centered 
at the monitor location. The aFAR [(C1)] refers to the percentage of false alarms if a forecasted 
exceedance is not observed within the designated area. The aH [(C2)] refers to the percentage 
of hits if a forecasted exceedance is observed within the designated area. The aFAR and aH 
both range from 0% to 100%. If a model performs well, the misses (Ac) will be low and the 
hits (Ab) will be high, resulting in high aH. In contrast, if a model performs poorly, the false 
positives (Aa) will be high and the hits (Ab) will be low, resulting in high aFAR.

The weighted success index (WSI) gives credit for observation O or prediction M that is 
close to the threshold T.

∑
=
+

+ +
×1001

b

a b c

n

WSI
IP

%, 	 (C3)

=

−
−

< < <

−
−

< < <











M fO
M fT

O T M fO

O fM
O fT

M T O fM
IP

, if

, if
,

	
(C4)

where a, b, and c refer to the three scenarios defined above and n represents the total num-
ber of observations. Note the choice of f in (C4) is empirical and is based on rules of thumb 
(Hanna 2006). Analysis of PM2.5 results for 2022 has shown that about 80% of the difference 
between observation and prediction is within a factor of 2; thus, in this study, f is set to 2.
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